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About this document 
 
In order to support the implementation of the Water Framework Directive, the European 
Commission has established a cluster on Integrated Catchment Water Modelling 
(CatchMod). The objective of this cluster is the development of common harmonised 
modelling tools and methodologies for the integrated management of water at river basin 
or sub-basin scales, including the interface to the coastal zone.  
Within the CatchMod cluster, the project Harmoni-CA has the objective to create a forum 
for unambiguous communication, information exchange and harmonisation of the use and 
development of ICT-tools relevant to integrated river basin management, and the 
implementation of the WFD. 
Harmoni-CA is a large-scale concerted action, meaning that it does not carry out a research 
project, but synthesised available knowledge with the help of knowledge providers such as 
researchers. Typical actions of Harmoni-CA are meetings and workshops, leading to 
synthesis reports and guidances. 
One of the tasks of the Harmoni-CA project, is defined within Harmoni-CA Work package 
2 “TOOLBOX”. The objective of the "CatchMod Toolbox" is to provide easy and guided 
access to approved (benchmarked) ICT-tools necessary for the development of River Basin 
Management Plans in the form of  an open, flexible, scientific sound toolbox for present 
and future integrated, harmonised ICT-tools. Easy access is not limited to technical access 
to resources through a web-site but also includes training material, demo case studies, 
protocols dealing with conditions for utilisation, rights of ownership, intellectual property 
rights and finance.  
 
This document is the first of a row of harmoni-CA Guidance documents that are developed 
to support the CatchMod Toolbox.  
 
Earlier versions of this document was presented and discussed at a CATCHMOD 
Technical Workshop, Copenhagen 16/11/2004. In this connection the document was 
formally reviewed by James Brown, Martin Krayer van Krauss, Bob Crabtree. Furthermor, 
constructive comments have been received from Simon Groot, Charles Perrin and Pasky 
Pascual. 
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1. Why is uncertainty assessment important 

1.1 Uncertainty and risk in decision making 
Integrated river basin management requires making a large number of decisions by 
operational agencies. A decision maker has to make decisions based on the available 
information. In most cases this information is deficient, incomplete and characterised by 
uncertainties of different kinds. How should this affect the decision making process? With 
increased uncertainty the chance of taking wrong decisions increases. Can the decision 
maker accept this? What can he or she do to make decisions that anticipate that outcomes 
can differ from what was expected? How should knowledge about the various uncertainties 
that characterise the available information be used to make better decisions? Nearly all 
information is uncertain. The main subject in this guidance document is methodologies and 
tools to characterise uncertainty and to assess the various sorts and sources of uncertainty, 
and the propagation of uncertainty through models to management information. 
 
As one option, the decision maker may decide to postpone making a decision. This will 
allow more effort (money) to be put into collecting additional data or increasing modelling 
efforts, so as to improve the quality of information and, thereby, reducing the probability 
of taking a wrong decision. Further work on data collection and modelling involves costs 
in itself, and delays in the decision may also involve additional costs as well. The typical 
question "Do we have enough understanding to responsibly make a decision responsibly?" 
is thus in a rational sense a question on whether the risks of wrong decisions caused by 
imperfectness of the information are acceptable, or whether it is advisable to improve the 
quality of the information by, for instance, further data collection/modelling. One formal 
approach to address this question is through “value of information” analysis (VOI). 
Essentially, VOI encourages the prioritisation of research such that the expected value of 
additional information is compared against the opportunity costs of uncertainty, including 
the costs of making the wrong decision. This is sometimes difficult to do quantitatively in 
the environmental field because of problems associated with putting a value on natural 
resources. Nevertheless, even in the absence of explicit quantification, it is useful to 
remember that continuous attempts to reduce uncertainty by collecting additional 
information does not always make economic sense. Additional information—in the form of 
more data or more refined algorithms—almost always incurs costs. These costs must be 
balanced against the expected benefits of such information. 
 
A note should be made here that higher quality of information does not automatically 
imply information with less uncertainty. It can also be information providing a richer 
insight in the sorts and magnitudes of uncertainty, so that the decision maker better 
understands what possible outcomes and risks to anticipate. This allows for contingent 
planning where options are kept open and flexible and where emergency risk management 
options can be prepared and kept on the shelf (compare to a fire extinguisher) so that they 
can be implemented immediately if that turns out to be necessary. 
 
Another option open to the decision maker is to become risk-avers. This may result in 
incorporating a large safety margin or a ‘tolerance’, so that increased resources are spent 
on measures, such as clean-up of a site or water body, where there is a large probability 
that it may not be required to protect the water resources. 
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A decision maker can adopt one of the strategies developed in the field of decision theory 
if the ranges of outcomes for different options to choose from are known, but not the 
probabilities of each outcome. For instance, maximin is the strategy that chooses the option 
that has the best (that is: the least severe) worst case scenario. It makes sense if we have 
little to win and a great deal to loose, but it tends to prevent us from taking advantage of 
opportunities. Closely related to maximin is the difference principle: one society is better 
off than another if the worst-off members of the former do better than the worst-off in the 
latter. Maximin allows the most disadvantaged members of society to be harmed if the 
overall society benefits; the difference principle would forego an overall benefit to the 
society if it harmed the most disadvantaged members. The difference principle has been 
criticised for that it does not weigh limiting disadvantages to a subset of people against a 
possible increased average utility of society. 
 
On the other extreme, maximax is the strategy that chooses the option that has the best 
best-case scenario. It is a risky strategy, often preferred by people with a risk seeking 
attitude that want to take advantage of opportunities and it makes sense if one has a great 
deal to gain and little to loose. Maximin can be seen as excessively pessimistic and 
maximax as excessively optimistic. An approach that attempts to balance between good 
and bad outcomes is the principle of insufficient reason: when we lack objective evidence 
to specify probabilities of outcomes, we should treat all outcomes as equally probable. 
(Resnik, 2003) 
 
A widely advocated strategy is the Precautionary Principle if both the bounds on the 
outcomes and their probabilities are unknown. The Precautionary Principle grants greater 
benefit of doubt to the environment and to public health than to the activities that may be 
held to threaten these things (Stirling, 2003). Because the Precautionary Principle applies 
to those cases where serious adverse effects and surprises can occur with an unknown 
probability, it is rational to follow a better safe than sorry strategy. Failing to take 
precautionary measures in a timely manner could result in devastating and irreversible 
consequences (Harremoës et al., 2001). Such consequences might have been avoided by 
proactive and anticipatory interventions whose costs are justifiable in comparison to the 
damages and losses that could occur.  
 
The above illustrates that decision makers should act differently under different situations 
of uncertainty. However, they will only be able to do this on a rational basis when they 
know how uncertain the available information is and when they know how to incorporate 
this in their decision making. Uncertainty is a difficult concept, and there is a need to 
educate and assist the decision maker working in a situation where there is uncertainty. In 
this document we will describe methodologies and tools for uncertainty assessment that 
may be used in the decision making process, allowing decision makers to take rational 
decisions on how to act under a situation of uncertainty. 
 

1.2 Water Framework Directive - Requirements 
The Water Framework Directive (WFD) provides a European environmental policy basis 
at the river basin scale. The river basin management and planning process prescribed in the 
WFD focuses on integrated management, involving all physical domains in water 
management, all sectors of water use, socio-economics and stakeholder participation. The 
planning process should move from a more rational-instrumental type of planning to an 
interactive planning with an open eye for the power of fundamental debate. The 
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uncertainties present in such planning processes are judged of an increasing importance 
(EC, 2004a). An iterative planning process can deal with these uncertainties, for instance 
by revising the programmes of measures according to the circumstances (EC, 2004b). As 
such, the WFD poses new challenges to river basin managers. The traditional physical 
domain specific and sectoral approaches need to be combined and extended to fulfil the 
WFD requirements. In practise, the preparation of the river basin management plans 
prescribed in the WFD is in addition to these new challenges, influenced by uncertainties 
on the underlying data and modelling results. 
 
A basic principle in EU environmental policy on which the WFD is based is ".. to 
contribute to the pursuit of the objectives of preserving, protecting and improving the 
quality of the environment in prudent and rational use of natural resources, and to be based 
on the precautionary principle ..1". Therefore, the holistic concept that is prescribed in the 
WFD with its integrated approach to natural resources and socio-economic issues requires 
that uncertainty be considered in the decision making process in order for it to become 
truly rational. 
 
Uncertainty is addressed in several sections of the WFD document, (Blind and de Blois, 
2003). For example, the WFD states with respect to monitoring that “Estimates of the level 
of confidence and precision of the results provided by the monitoring programmes shall be 
given ..”. In addition, most of the WFD guidance documents, being more specific than the 
WFD document itself, explicitly emphasise that uncertainty analyses should be performed. 
For instance, the guidance document on the planning process (EC,2004a) states: 
“Uncertainty can be defined as the occurrence of events that are beyond our control. 
Uncertainty is always an element in the planning process. It arises because the complexity 
of the many factors involved. In fact, meteorological, demographic, social, technical, and 
political conditions which will determine the planning process have behaviour patterns not 
always known with sufficient accuracy. Uncertainty arises mainly due to the stochastic 
nature of some key elements affecting these processes.” Similarly, the WATECO 
document on economic analysis states that “Uncertainty on costs, effectiveness and time-
lagged effects of measures needs to be dealt with throughout the economic analysis 
process, and more generally throughout the process of identifying measures and 
developing the river basin management plan”. However, despite strong recommendations 
to consider uncertainty aspects, the guidance documents do not include recommendations 
on how to do so. 
 

1.3 A motivating example 
The problem is illustrated by an example from practise based on a study conducted by the 
County of Copenhagen (Copenhagen County, 2000; Refsgaard et al., 2000). The County of 
Copenhagen is the authority responsible for water resources management in the county 
where the city of Copenhagen abstracts groundwater for most of its water supply. 
According to a new Water Supply Act the county had to prepare an action plan for 
protection of groundwater against pollution. As a first step, in 2000, the county asked five 
groups of Danish consulting firms to conduct studies of the aquifer’s vulnerability to 
pollution in a 175 km2 area west of Copenhagen, where the groundwater abstraction 
amounts to about 12 million m3/year. The key question to be answered was: “which parts 
of this particular area are most vulnerable to pollution and need to be protected?” The five 

                                                 
1 Directive 2000/60/EC, paragraph 11 in the introductory section. 
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consultants were selected from among the most well reputed consulting firms in Denmark, 
and they were known to have different views and preferences on which methodologies are 
most suitable for assessing vulnerability. As the job was one of the first consultancy 
studies in a new major market for preparation of groundwater protection action plans it was 
considered a prestigious job to which the consultants generally allocated some of their 
most qualified professionals. 
 
The five consultants used significantly different approaches. One consultant based his 
approach on annual fluctuations of piezometric heads assuming that the larger the 
fluctuations the more interaction between aquifer and surface water systems and, hence, 
the larger vulnerability. Several consultants used the DRASTIC multi-criteria method 
(Aller et al., 1987), but modified it in different ways by changing weights and adding new, 
mainly geochemically oriented, criteria. One consultant based his approach on advanced 
hydrological modelling of both groundwater and surface water systems using the MIKE 
SHE code. Two other consultants used simpler groundwater modelling approaches. The 
three consultants applying modelling used simulated recharge as inputs to their respective 
DRASTIC approach. Thus, the five consultants used five different conceptual models to 
describe the possibility of groundwater pollution in the area. In addition, their different 
interpretations and interpolations made from a common data base resulted in significantly 
different figures; for example, for areal means of precipitation and evapotranspiration and 
the thickness of various geological layers (Refsgaard et al., 2000). Due to lack of 
concentration data in the aquifer system the methods could, mostly, not be tested against 
field data and their use could therefore be characterised as non-documented extrapolation. 
Such lack of rigorous validation tests is common in studies dealing with aquifer 
vulnerability towards pollution. 
 
The conclusions of the five consultants regarding vulnerability to nitrate pollution are 
shown in Fig. 1. It is seen that the five estimates differ substantially from each other. In the 
present case, no data exist to validate the model predictions, because the five models have 
been used to make extrapolations towards unobservable futures. Thus, it is not possible, 
from existing field data, to tell which of the five model estimates are more reliable. The 
differences in prediction originate from two main sources: (i) data and parameter 
uncertainty and (ii) conceptual uncertainty. However, despite the significant data and 
parameter uncertainty, the main cause of the differences lies in the different conceptual 
models that were used by the five consultants.  
 
Usually a water manager commissions only one study and bases his decisions on the 
conclusions from that study. The uniqueness of the present study was that five consultants 
were asked to answer the same question on the basis of the same data. In this respect the 
differences between the five best estimates are striking and clearly do not provide a sound 
basis for deciding anything about which areas should be protected. A worrying question, 
which is left unanswered, is whether the basis for decisions is just as poor in the many 
other cases where only a single conceptual model has been used and where, subsequently, 
a lot of money has been used to prepare and implement action plans. 
 
In this case the uncertainty was so large that a basis for making a rationale decision did not 
exist. The conceptual uncertainty was discovered by chance, and the level of the 
uncertainty was a large, and uncomfortable, surprise to the water manager. 
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Fig. 1 Model predictions on aquifer vulnerability towards nitrate pollution for a 175 km2 
area west of Copenhagen (Copenhagen County, 2000). 
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1.4 Context and objective of this document 
Models describing water flows, water quality, ecology and economy are being developed 
and used in increasing number and variety. With the requirements imposed by the WFD 
the trend in recent years to base water management decisions to a larger extent on model 
studies and to use more sophisticated models is likely to be reinforced. It is important to 
note that the modelling studies typically do not address the entire water resources 
management decision process, such as the WFD process, but rather support certain 
elements of the process.  
 
The role of modelling as part of the WFD process may be illustrated schematically as in 
Fig. 2. The inner circle in Fig 2 depicts a simplified version of the WFD planning process 
(EC, 2004a) with the main elements: 
• Identification including assessment of present status, analysis of impacts and pressures 

and establishment of environmental objectives. Here modelling may be useful for 
example for supporting assessments of what are the reference conditions, for assessment 
of the pressures and what are the impacts of the various pressures in combination to 
monitoring data and expert judgement (EC, 2004b). 

• Designing including the set up and analysis of programme of measures designed to be 
able in a cost effective way to reach the environmental objectives. Here modelling will 
typically be used for supporting assessments of the effects and costs of various 
measures under consideration. 

• Implementing the measures. Here on-line modelling in some cases may support the 
operational decisions to be made. 

• Evaluation of the effects of the measures on the environment. Here modelling may 
support the monitoring in order to extract maximum information from the monitoring 
data, e.g. by indicating errors and inadequacies in the data and by filtering out the 
effects of climate variability. 

This main WFD process is a participatory process with important elements of public 
participation. 
 
Modelling can be used as a tool at various stages of the WFD process, as illustrated by the 
four smaller circles in Fig. 2. The typical steps and elements of a modelling process are 
illustrated in Fig. 3 and briefly described in Chapter 2. The most important interactions 
between the modelling process and the main planning process are: 
 
• The modelling process starts with a thorough framing of the problem to be addressed 

and definition of modelling objectives and requirements for the modelling study (Step 
1 in Fig. 3). Water managers and stakeholders dominate this step, which basically is 
identical to part of the broader planning process. A participatory based assessment of 
the most important sources of uncertainty for the decision (WFD) process should be 
used as a basis for prioritising the elements of the modelling study. The uncertainty 
assessments made at this stage will typically be qualitative. 

• The main modelling itself is composed of steps 2,3 and 4 of Fig 3. Here the link with 
the main planning process consists of dialogue, reviews and discussions of preliminary 
results involving water managers and, according to decisions made at the start of the 
modelling, some stakeholders. As the modelling process proceeds uncertainty 
assessments are typically made more quantitative (rather than qualitative) and the 
uncertainties assessed by the modeller are confronted with the water manager and 
stakeholder expectations to accuracy. 
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• The finalisation of the modelling study (equivalent to the last step in Fig. 3), typically 
including scenario simulations. Here the water managers and the stakeholders again 
have a dominant role. The decisions made at the outcome of this step on the basis of 
modelling results are made in the context of the main planning process. Uncertainty 
assessment of model predictions is a crucial aspect of the modelling results and should 
be communicated in a way that is accessible for the stakeholders in the further WFD 
process. 

 

 
Fig. 2 The role of modelling in the water resources management process within the context 
of the Water Framework Directive (WFD).  
 
 
The objective of this document is to provide guidance on uncertainty related to modelling 
in water resources management. Thus, the document does not focus on uncertainty related 
to the broader policy and public participation processes. The target audience for the 
document is professionals involved in modelling. This includes modellers themselves as 
well as the persons in the water manager’s and stakeholders’ organisations designated to 
interact with the modeller in the modelling process.  
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2. When is uncertainty assessment required 

2.1 The modelling process 
A modelling study will involve several phases and several actors. A typical WFD 
modelling study will involve the following four different types of actors: 
• The water manager, i.e. the person or organisation responsible for the management or 

protection of the water resources, and thus of the modelling study and the outcome (the 
problem owner). 

• The modeller, i.e. a person or an organisation that works with the model conducting the 
modelling study. If the modeller and the water manager belongs to different 
organisations, their roles will typically be denoted consultant and client, respectively. 

• The reviewer, i.e. a person that is conducting some kind of external review of a 
modelling study. The review may be more or less comprehensive depending on the 
requirements of the particular case. The reviewer is typically appointed by the water 
manager to support the water manager to match the modelling capability of the 
modeller. 

• The stakeholders/public. A stakeholder is an interested party with a stake in the water 
management issue, either in exploiting or protecting the resource. Stakeholders include 
the following different groups: (i) competent water resource authority (typically the 
water manager, cf. above); (ii) interest groups; and (iii) general public. 

 
The WFD modelling process may, according to the HarmoniQuA project (Refsgaard et al., 
2004; Scholten et al., 2004, www.harmoniqua.org), be decomposed into five major steps 
which again are decomposed into 45 tasks (Fig. 3). The contents of the five steps are: 
• STEP1 (Model Study Plan). This step aims to agree on a Model Study Plan comprising 

answers to the questions: Why is modelling required for this particular model study? 
What is the overall modelling approach and which work should be carried out? Who 
will do the modelling work? Who should do the technical reviews? Which 
stakeholders/public should be involved and to what degree? What are the resources 
available for the project? The water manager needs to describe the problem and its 
context as well as the available data. A very important task is then to analyse and 
determine what are the various requirements of the modelling study in terms of the 
expected accuracy of modelling results. The acceptable level of accuracy will vary 
from case to case and must be seen in a socio-economic context. It should, therefore, be 
defined through a dialogue between the modeller, water manager and 
stakeholders/public. In this respect an analysis of the key sources of uncertainty is 
crucial in order to focus the study on the elements that produce most information of 
relevance to the problem at hand. 

• STEP 2 (Data and Conceptualisation). In this step the modeller should gather all the 
relevant knowledge about the study basin and develop an overview of the processes 
and their interactions in order to conceptualise how the system should be modelled in 
sufficient detail to meet the requirements specified in the Model Study Plan. 
Consideration must be given to the spatial and temporal detail required of a model, to 
the system dynamics, to the boundary conditions and to how the model parameters can 
be determined from the available data. The need to model certain processes in 
alternative ways or to differing levels of detail in order to enable assessments of model 
structure uncertainty should be evaluated. The availability of existing computer codes 
that can address the model requirements should also be addressed. 
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• STEP 3 (Model Set-up). Model Set-up implies transforming the conceptual model into 
a site-specific model that can be run in the selected model code. A major task in Model 
Set-up is the processing of data in order to prepare the input files necessary for 
executing the model. Usually, the model is run within a Graphical User Interface (GUI) 
where many tasks have been automated. The GUI speeds up the generation of input 
files, but it does not guarantee that the input files are error free. The modeller performs 
this work. 

• STEP 4 (Calibration and Validation). This step is concerned with the process of 
analysing the model that was constructed during the previous step, first by calibrating 
the model, and then by validating its performance against independent field data. 
Finally, the reliability of model simulations for the intended domain of applicability is 
assessed through uncertainty analyses. The results are described so that the scope of 
model use and its associated limitations are documented and made explicit. The 
modeller performs this work. 

• STEP 5 (Simulation and Evaluation). In this step the modeller uses the calibrated and 
validated model to make simulations to meet the objectives and requirements of the 
model study. Depending on the objectives of the study, these simulations may result in 
specific results that can be used in subsequent decision making (e.g. for planning or 
design purposes) or to improve understanding (e.g. of the hydrological/ecological 
regime of the study area). It is important to carry out suitable uncertainty assessments 
of the model predictions in order to arrive at a robust decision. As with the other steps, 
the quality of the results needs to be assessed through internal and external reviews. 

 
Each of the last four steps is concluded with a reporting task followed by a review task. 
The review tasks include dialogues between water manager, modeller, reviewer and, often, 
stakeholders/public. The protocol includes many feedback possibilities (Fig. 3).  
 

2.2 Uncertainty aspects 
Uncertainty aspects are important throughout the modelling process. Thus, uncertainty is 
considered explicitly in 14 out of the 45 tasks in Fig. 3. But uncertainty is treated in 
different ways at different stages of the process. The four main actions of dealing with 
uncertainty may be characterised as: 
 
A. Identify and characterise sources of uncertainty (Fig 3          ) 
The various sources of uncertainty need to be identified and characterised in connection 
with the tasks Describe Problem and Context and Determine Requirements in Step1 Model 
Study Plan (yellow arrows in Fig. 3). This should be done by the water manager but 
typically after a dialogue with relevant stakeholders. Depending on the framing of the 
model study some of these uncertainties may be located as external non-controllable 
sources. It is crucial that uncertainty is considered explicitly so early in the definition phase 
of the model study. Here uncertainties are seldom quantified. It is also at this early stage 
that the first analyses are made on the acceptable level of uncertainty and the expected 
model performance. 
 
B. Modeller reconsiders uncertainty and performance criteria  (Fig 3           ) 
The modeller has to reconsider several times during the modelling process if the accuracy 
performance criteria formulated by the water manager are realistic for the particular model 
study. Most importantly (full green arrows in Fig. 3), the modeller has to do this in 
connection with preparation of a proposal, and when, after having made the first model test 
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run, s/he re-evaluates the performance criteria before the model validation tests in the next 
step. Furthermore (dotted green arrows in Fig. 3) in connection with reporting at the end of 
each step, the modeller has the opportunity to reconsider whether the originally promised 
performance criteria are still realistic, given the new information produced during the 
previous tasks in the respective step.  
 
C. Reviews – dialogue- decisions (Fig 3           ) 
The last task in each step is a dialogue or decision task where a dialogue between water 
manager and modeller takes place. Often independent reviews are conducted as a basis for 
the decision and stakeholders and/or the general public are involved in the dialogue. As 
part of this dialogue, uncertainty aspects become important, e.g. when discussing whether 
there are sufficient data to proceed with the modelling, or whether the uncertainty of the 
model simulations are at a level where the results can be expected to be useful. The 
reviews and the stakeholder dialogues are also important platforms for a reflection on 
whether the assumptions made in the model are realistic and on how the study outcome 
may be influenced by the implicit and explicit assumptions made in the model. In many 
cases, more than one assumption is scientifically tenable. If such assumptions influence the 
model outcome, then the ignorance regarding which assumption is the best assumption can 
be an important source of uncertainty. 
 
D. Uncertainty assessment and propagation  (Fig 3           ) 
Towards the end of the step Calibration and Validation and the step Simulation and 
Evaluation there are two tasks dealing exclusively with uncertainty assessment. In the first 
(Uncertainty Analysis of Calibration and Validation) an assessment is made of the model 
uncertainty related to simulations in the validation test cases. This is used for evaluating 
possible biases in model simulations and assessing if the model performance is good 
enough compared to the agreed accuracy requirements. In the second task (Uncertainty 
Analysis of Simulation) the uncertainties in the problem framing (the context) and the 
management scenarios are also taken into account. 
 
The uncertainty assessment and propagation tasks (item D above) are the traditional 
uncertainty tasks often conducted in connection with model studies. These tasks are often 
comprehensive and may involve a lot of model calculations and are often limited to 
quantitative uncertainty. These tasks, which are both located towards the end of the 
modelling process, are very important. However, it is equally important to introduce 
uncertainty in the introductory phase of a model study. Therefore, the identification and 
characterisation of all uncertainty sources recommended in the task Determine 
Requirements under Step 1 (item A above) is crucial. The uncertainty aspects mentioned 
under items B and C are “less heavy” and may be seen as a follow up to item A. 
 
 



 

   

Fig. 3 The five modelling steps and 45 tasks in the HarmoniQuA modelling protocol (Refsgaard et al., 2004) 
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3. What is uncertainty 

3.1 Definitions 
Uncertainty and associated terms such as error, risk and ignorance are defined and 
interpreted differently by different authors, see Walker et al. (2003) for a review. The 
different definitions reflect the underlying scientific philosophical way of thinking and 
therefore typically vary among different scientific disciplines. In addition they vary 
depending on their purpose. Some are rather generic, such as Funtowicz and Ravetz 
(1990), while others apply more specifically to model based water management, such as 
Beck (1987). 
 
In this document we will use the terminology of Klauer and Brown (2003) that has 
emerged after discussions between social scientists and natural scientists specifically 
aiming at applications in model based water management. More details and discussion on 
the definitions given below can be found in Klauer and Brown (2003). By doing so we 
adopt a subjective interpretation of uncertainty in which the degree of confidence that a 
decision maker has about possible outcomes and/or probabilities of these outcomes is the 
central focus. For reasons of completeness and comparison we will also briefly sketch the 
objective interpretation of each form of uncertainty we discuss. 
 

Uncertainty 
The notion of uncertainty includes both subjective and objective aspects. Becoming 
confident or establishing lack of confidence is an act of subjective judgement about the 
validity of some information. However, the judgement might be supported and informed 
by the evaluation of ‘objective’ facts and other forms of evidence. 
 

Definition (Uncertainty): A person is uncertain if s/he lacks confidence about the specific 
outcomes of an event or action. Reasons for this lack of confidence might include a 
judgement of the information as incomplete, blurred, inaccurate or potentially false or 
might reflect intrinsic limits to the deterministic predictability of complex systems or of 
stochastic processes. 
Similarly, a person is certain if s/he is confident about the outcome of an event. It is 
possible that a person feels certain but has misjudged the situation (i.e. s/he is wrong). 
 

Example: A person may be uncertain about the exact value of a river discharge value due 
to uncertainty related to the instruments used for measurements, representativeness of 
measurements and the method of transforming measurements (of often secondary 
variables) to discharge. Two different people may have different perceptions of the 
magnitude of this uncertainty. 
 
Note that other authors define the term uncertainty not as a property (state of confidence) 
of the decision maker but as a property (state of perfection) of the total body of knowledge 
or information that is available at the moment of judgement. Uncertainty is then seen as an 
expression of the various forms of imperfection of the available information and depends 
on the state-of-the-art of scientific knowledge on the problem at the moment that the 
decision needs to be made (assuming that the decision maker has access to the state-of-the-
art knowledge). 
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Ignorance 
Awareness of the information on the potential outcomes of an event is a precondition for 
any grade of certainty or uncertainty. There are different, gradual stages of awareness 
starting from awareness of the existence of information to a deep understanding of the 
information.  
 

Definition (ignorance): A person is ignorant with respect to an event if s/he is unaware of 
the (potential) outcomes of that event or of the event itself. 
 

Examples: Oestrogens were not suspected of being harmful to fishes until a few decades 
ago. Clayey till was supposed to be virtually impermeable for pesticides and other 
contaminants and, therefore, provide good protection of groundwater until it was 
discovered 10-20 years ago that some clayey layers contain fractures through which 
pollutants can be transported very rapidly. 
 
Note that ignorance refers to unawareness of the entire scientific community about 
potential outcomes of an event or side effects of an activity in the interpretation that sees 
ignorance as a property of the state of scientific knowledge rather than as the state of the 
individual decision maker. 

 

Risk situations 
If uncertainty is recognised as being an important issue, then the most common strategy to 
cope with this is to use probabilities. However, the use of probabilities presupposes a 
number of things about the available representation. First, it assumes that all potential 
outcomes of the event are known. In other words, that the event is properly characterised 
by the set of potential outcomes. Secondly, it assumes that the probabilities of each 
outcome are also known. We will call such a situation a risk situation.  
 

Definition (risk situation): A risk situation is a person’s representation of an event, where 
s/he assumes to know all potential outcomes as well as the probabilities of each outcome. 
In some disciplines risk is defined as being equivalent to probability, while in others it is 
defined as damage multiplied by probability. Our definition is compatible with the latter 
(but not the first) of these. 
 

Example: A water manager has to decide whether to implement a certain measure; for 
example, cleaning a polluted aquifer or to make additional field measurements to improve 
the data basis and, thereby, reduce the uncertainty involved (i.e. two possible outcomes). 
The water manager believes s/he can calculate the uncertainty (in terms of a probability 
distribution function) for how polluted the aquifer is and how much this uncertainty will 
change in case of new data. At the same time s/he knows the costs of making a wrong 
decision and the costs of the additional field program. 
 

Precaution 
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The Precautionary Principle (PP) has become an underlying rationale over the past decades 
for the satisfactory and ethically justified management of uncertain risks to public health, 
society or environment. The PP aims to protect humans and the environment against 
uncertain risks of human action by means of pre-damage control (anticipatory measures). 
The PP is to supplement, but not necessarily replace, other management strategies that fall 
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short of being able to handle large scale scientific uncertainty and ignorance. It is 
incorporated in a large and increasing number of international treaties and declarations in 
the fields of, inter alia, sustainable development, environmental protection, health, trade, 
and food safety. The PP is on its way to becoming a widely accepted part of international 
law. In its basic form, the Precautionary Principle states that actions to protect human 
health and the environment against possible danger of severe and irreversible damage, 
need not wait for rigorous scientific proof (Weiss, 2003). 
 

Definition (precautionary principle): In order to protect the environment, the 
precautionary approach shall be widely applied by States according to their capabilities. 
The lack of full scientific certainty shall not be used as a reason for postponing cost-
effective measures to prevent environmental degradation where there are threats of serious 
or irreversible damage. 
The triple negative notion in this definition stemming from the Rio Declaration(1992), that 
the absence of rigorous proof of harm does not justify inaction, is perceived as being weak. 
It forces the consideration of proactive intervention but does not require such intervention. 
Other definitions are stronger and put the burden of proof on the proponent of an action to 
show that it does not pose a danger of environmental harm. For examples, the Wingspread 
Statement on the Precautionary Principle defines it as follows: “When an activity raises 
threats of harm to human health or the environment, precautionary measures should be 
taken even if cause and effect relationships are not fully established scientifically . . .[The] 
proponent of the activity, rather than the public, should bear the burden of proof.” 
 

3.2 Taxonomy of imperfect knowledge 
There are many different decision situations, with different possibilities for characterising 
our confidence in the available information or in other words the uncertainty. A first 
distinction is between ignorance as a lack of awareness about imperfect knowledge and 
uncertainty as a state of confidence about knowledge. Our state of confidence may range 
from being certain to admitting that we know nothing (of use), and uncertainty may be 
expressed at a number of levels in between. Regardless of our confidence in what we 
know, ignorance implies that we can still be wrong (‘in error’). In this respect Brown 
(2004) has defined a taxonomy of imperfect knowledge as illustrated in Fig. 4. 
 
It is useful in evaluating scientific uncertainty to distinguish between uncertainty about the 
‘outcomes’ or scenarios, as possible states of ‘reality’ (mechanisms, events, observations), 
and uncertainty in terms of ‘probability’ (chance, likelihood, plausibility) for each outcome 
to occur. If one throws a perfect dice, the outcome is uncertain, but the ‘draw’ of a perfect 
dice is certain: we know precisely the probability for each of the 6 outcomes, each being 
1/6. This is what we mean by ‘uncertainty in terms of probability’. However, the estimates 
for the probability of each outcome can also be uncertain. If a model study says: “there is a 
30% probability that this area will flood two times in the next year”, there is not only 
‘uncertainty in terms of probability’ but also uncertainty regarding whether the estimate of 
30% is a reliable estimate. 

 

Secondly, it is useful to distinguish between bounded uncertainty, where all possible 
outcomes are deemed ‘known’ (they can be distinct or indistinct) and unbounded 
uncertainty, where some or all possible outcomes are deemed unknown. Since quantitative 
probabilities require ‘all possible outcomes’ of an uncertain event and each of their 
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individual probabilities to be known, they can only be defined for ‘bounded uncertainties’. 
If probabilities cannot be quantified in any undisputed way, we often can still qualify the 
available body of evidence for the possibility of various outcomes. Inspired by legal 
practices, Weiss (2003a, 2003b, + personal communication 2004) developed the following 
12 point subjective scale for qualifying evidence that can be used for this purpose: 

• Impossible 
• Hunch 
• Reasonable suspicion 
• Reasonable belief 
• Reasonable indication 
• Preponderance of the evidence 
• Substantial and credible 
• Clear indication 
• Clear showing 
• Clear and convincing 
• Beyond a reasonable doubt 
• Beyond any doubt 
 

If outcomes but no probabilities are known we have to rely on ‘scenario analysis’. 

 

‘Unbounded uncertainty’ 
(not all outcomes known)

Certainty
(outcome known)

‘Bounded uncertainty’
(all possible outcomes known)

All probabilities known Some probabilities known
(rare)

Some outcomes
and probabilities

Some outcomes,
No probabilities

No probabilities known

No outcomes,
“Do not know”

State of knowledge about ‘reality’ (uncertainty concepts)

Statistical Qualitative

Recognised ignoranceScenarios

Ignorance: unaware of imperfect knowledge

Fig. 4 Taxonomy of imperfect knowledge resulting in different uncertainty situations 
(Brown, 2004) 
 
The bounded uncertainty where all probabilities are assumed known (the blue case in Fig. 
4) is often denoted ‘statistical uncertainty’ (e.g. Walker et al., 2003). This is the case that is 
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traditionally addressed in model based uncertainty assessments. It is important to note that 
this case only constitutes one of many of the decision situations outlined in Fig. 4, and, in 
many situations, the main uncertainty in a decision situation cannot be characterised 
quantitatively. 
 

3.3 Sources of uncertainty 
Walker et al. (2003) describes the uncertainty as manifesting itself at different locations in 
the model based water management process. These locations, or sources, may be 
characterised as follows: 
• Context, i.e. at the boundaries of the system to be modelled. The model context is 

typically determined at the initial stage of the study where the problem is identified and 
the focus of the model study selected as a confined part of the overall problem. This 
includes, for example, the external economic, environmental, political, social and 
technological circumstances that form the context of problem. 

• Input uncertainty in terms of external driving forces (within or outside the control of 
the water manager) and system data that drive the model such as land use maps, 
pollution sources and climate data. 

• Model structure uncertainty is the conceptual uncertainty due to incomplete 
understanding and simplified descriptions of processes as compared to nature. 

• Parameter uncertainty, i.e. the uncertainties related to parameter values. 
• Model technical uncertainty is the uncertainty arising from computer implementation 

of the model, e.g. due to numerical approximations and bugs in the software. 
• Model output uncertainty, i.e. the total uncertainty on the model simulations taken all 

the above sources into account, e.g. by uncertainty propagation. 
 

3.4 Nature of uncertainty 
Walker et al. (2003) explain that the Nature of uncertainty can be categorised into: 
• Epistemic uncertainty, i.e. the uncertainty due to imperfect knowledge. 
• Stochastic uncertainty, i.e. uncertainty due to inherent variability, e.g. climate 

variability. 
Epistemic uncertainty is reducible by more studies: e.g. comprising research and data 
collection. Stochastic uncertainty is non-reducible. 
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Often the uncertainty on a certain event includes both epistemic and stochastic uncertainty. 
An example is the uncertainty of the 100 year flood at a given site. This flood event can be 
estimated: e.g. by use of standard flood frequency analysis on the basis of existing flow 
data. The (epistemic) uncertainty may be reduced by improving the data analysis, by 
making additional monitoring (longer time series) or by a deepening our understanding of 
how the modelled system works. Note that this does not imply that data collection and 
further research automatically leads to a reduction of epistemic uncertainty. More research 
sometimes increases epistemic uncertainty in the short term. For instance, the recognised 
epistemic ignorance has temporary increased if new data show that our mechanistic 
understanding of the system (as represented in a model structure) cannot be right and 
science has not yet discovered what mechanisms or internal system feedbacks, or other 
factors were overlooked. The epistemic uncertainty is reduced only after we have 
discovered what was wrong about our earlier mechanistic understanding of the system. 
However, no matter how perfect both the data collection and the mechanistic 
understanding of the system are, and, no matter for how long historical data time series 
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exist, there will always be some (stochastic) uncertainty inherent to the natural system, 
related to the stochastic and chaotic nature of several natural phenomena, such as weather. 
Perfect knowledge on these phenomena cannot give us a deterministic prediction, but 
would have the form of a perfect characterisation of the natural variability; for example, a 
probability density function for rainfall in a month of the year. 
 

3.5 The uncertainty matrix 
The uncertainty matrix in Fig. 5 can be used as a tool to get an overview of the various 
sources of uncertainty in a modelling study. The matrix is modified after Walker et al. 
(2003) in such a way that it matches Fig. 4 and so that the taxonomy now gives 
‘uncertainty type’ in descriptions that indicate in what terms uncertainty can best be 
described. The vertical axis identifies the location or source of uncertainty while the 
horizontal axis covers the level and nature of uncertainty. 
 
It is noticed that the matrix is in reality three-dimensional (source, type, nature). Thus, the 
categories Type and Nature are not mutually exclusive, and it may be argued that the 
matrix should be modified in such a way that the two uncertainties within Nature 
(epistemic and variability) should become subcells within the Type categories. This is not 
done for graphical reasons. 
 
An inventory can be made of where the uncertainties are located and how they can be 
characterised by filling out all the cells in the matrix. 
 

Taxonomy (types of uncertainty) Nature  
Source of uncertainty Statistical 

uncertainty
Scenario 

uncertainty
Qualitative 
uncertainty

Recognised 
ignorance 

Epistemic 
uncertainty

Stochastic 
uncertainty

 
Context 

Natural, 
technological, 
economic, 
social, political 

      

System data       Inputs 
Driving forces       
Model structure       
Technical       

 
Model 

Parameters       
Model outputs       
 
Fig. 5 The uncertainty matrix (modified after Walker et al., 2003). 
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4. Methodologies for uncertainty assessment 
In general, transparency and reporting are essential for a good uncertainty assessment. 
Many methodologies and tools suitable for supporting uncertainty assessment have been 
developed and reported in the scientific literature. No methodology is applicable to address 
all the different aspects of uncertainty assessment. In this chapter some important methods 
are briefly described in one-page summaries: 
• Data Uncertainty 
• Error Propagation Equations 
• Expert Elicitation 
• Extended Peer Review (review by stakeholders) 
• Inverse modelling (parameter estimation) 
• Inverse modelling (predictive uncertainty) 
• Monte Carlo Analysis 
• Multiple Model Simulation 
• NUSAP 
• Quality Assurance 
• Scenario Analysis 
• Sensitivity Analysis 
• Stakeholder Involvement 
• Uncertainty Matrix 
 
References to more detailed descriptions and to supporting software tools are provided in 
the summary descriptions. For several of the methodologies more extensive descriptions 
are available in the RIVM/MNP Tool Catalogue, that served as a starting point for the 
overview presented here (van der Sluijs et al., 2004). 
 
The methods can roughly be divided in three groups that differ slightly in purpose:  
1. Methods to characterise and prioritise uncertainty: 

This includes methods for handling data uncertainty, methods of expert elicitation, 
parameter estimation through inverse modelling, sensitivity analysis, the NUSAP 
method and the uncertainty matrix. 

2. Methods aiming to increase the quality of information: 
This includes procedures for quality assurance, extended peer review and stakeholder 
involvement. 

3. Methods to quantify and propagate uncertainty in model calculations to produce 
uncertainty in model outcome: 
This includes the error propagation equations, Monte Carlo analysis, inverse modelling 
(parameter estimation and predictive uncertainty), multiple model simulation, various 
forms of sensitivity analysis and scenario analysis. 

The methods are not necessarily valid for only one of the listed groups. Sensitivity analysis 
may, for instance, be used both to identify the importance of a given uncertainty source at 
an early stage in the modelling process, and again at a later stage to quantify the 
uncertainty with respect to the model results. Each of the methods will be reviewed in the 
following sections. 
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4.1 Data Uncertainty 
Description 
Uncertainty in data may be described in 13 uncertainty categories depending on how data varies in time and 
space (Brown, 2004; Brown et al., 2005). 

Measurement scale
Space-time variability Continuous

numerical
Discrete

numerical Categorical Narrative

Constant in space and time A1 A2 A3

Varies in time, not in space B1 B2 B3

Varies in space, not in time C1 C2 C3
4

Varies in time and space D1 D2 D3

Each data category is associated with a range of uncertainty models, for which more specific probability 
density functions (pdfs) may be developed with different simplifying assumptions (e.g. Gaussian; second-
order stationarity; degree of temporal and spatial autocorrelation). Furthermore, correlation in time and space 
is characterised by correlogram/variogram functions. Categorical data (3) differ from numerical data (1, 2), 
because the categories are not measured on a numerical scale.  
      A software tool for supporting the assessment of data uncertainty within the above framework is being 
developed within the EU FP5 project HarmoniRiB. This tool will become publicly available by 2006. 
Resources required 
Assessment of uncertainty requires a basic understanding of uncertainty concepts such as probability 
distribution and correlogram functions and their relation to the scale of measurement. 
      Uncertainty assessment deduced from specific information on the individual sources of uncertainty or 
from data analysis is a laborious and difficult task requiring substantial resources. This approach requires a 
specific knowledge on the various sources of uncertainty such as instrument accuracy 
(http://www.harmonirib.com) transformation functions from variable actually measured (e.g. water table) to 
variable of interest (e.g. discharge), aggregation in time and/or space, representativeness of sampling, etc. 
      Assessments based on expert judgements and literature values from similar settings are often the only 
feasible way in practice. Such assessments may be supported by guidelines for assessing uncertainty in 
various types of data originating from meteorology, soil physics and geochemistry, hydrogeology, land 
cover, topography, discharge, surface water quality, ecology and socio-economics (Van Loon and Refsgaard, 
2005). This report has been prepared on the basis of literature reviews. 

Strengths and limitations 
+ Important input when assessing uncertainty of model output 
+ Useful feedback information to design of monitoring programmes 
− May require a lot of work 
− Complex issue with many possibilities to make theoretically inconsistent assessments. Especially the 

correlation structure and its link with the scale of support may be difficult to understand 

References 
http://www.harmonirib.com
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Brown JD (2004) Knowledge, uncertainty and physical geography: towards the development of 
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Uncertainty Information in Integrated Water Management (HarmoniRiB). Accepted for publication in 
Environmental Science and Policy. 

Van Loon E and Refsgaard JC (eds.) (2005) Guidelines for assessing data uncertainty in hydrological studies. 
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http://www.harmonirib.com/
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4.2 Error Propagation Equations 
Description 
The error propagation equations (e.g. Mandel, 1984, Bevington and Robinson, 1992) are widely used in the 
experimental and measurement sciences to estimate error propagation in calculations. The error propagation 
equations are valid only if the following conditions are met: 
• The uncertainties have Gaussian (normal) distributions; 
• The uncertainties are relatively small: the standard deviation divided by the mean value being less than 0.3; 
• The uncertainties have no significant covariance. 
The error propagation equations for the most common operators are (σ is the standard deviation): 
 
Addition and Subtraction: z = x + y + ..   or    z = x - y - .. 

..)()( 22 ++= yxz σσσ  
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The method can be extended to allow non-Gaussian distributions and to allow for covariances (see e.g.: 
http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc55.htm
Resources required 
The error propagation equations require no specific hardware or software and can typically be applied on the 
back of the envelope or on an ordinary scientific calculator, or using a spreadsheet. 
 
Most of the time will be consumed by quantifying the uncertainties in the parameters and inputs, which can 
be derived from statistics if available or otherwise can for instance be obtained by means of expert elicitation.

Strengths and limitations 
+ Requires very little resources and skills (but the choice of the aggregation level for the analysis is an 

important issue that does require skills) 
+ Quick (but can be dirty) 
 
− Has a limited domain of applicability (e.g. near-linearity assumption) 
− The basic error propagation equations cannot cope well with distributions with shapes other than normal 

(but the method can be extended to account for other distributions). 
− Leads to a tendency to assume that all distributions are normal, even in cases where knowledge of the 

shape is absent and, hence, a uniform distribution would be a better reflection of the state of knowledge. 
− Cannot easily be applied in complex calculations. 
 
References 
Bevington PR and Robinson DK (1992) Data Reduction and Error Analysis for the Physical Sciences, 

WCB/McGraw-Hill Boston USA, p.328. 
IPCC (2000) Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, 

IPCC. 
Ku H (1966). Notes on the Use of Propagation of Error Formulas, J Research of National Bureau of 

Standards-C. Engineering and Instrumentation, 70C, 4, 263-273.  
Mandel J (1984) The Statistical Analysis of Experimental Data, Dover Publications New York, USA, p.410. 

http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc55.htm
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4.3 Expert Elicitation 
Description 
Expert elicitation is a structured process to elicit subjective judgements from experts. It is widely used in 
quantitative risk analysis to quantify uncertainties in cases where there are no or too few direct empirical data 
available to infer on uncertainty. Usually the subjective judgement is represented as a ‘subjective’ probability 
density function (PDF) reflecting the expert’s degree of belief. 
      Expert elicitation in the context of uncertainty quantification aims at a credible and traceable account of 
specifying probabilistic information regarding uncertainty, in a structured and documented way. Typically it 
is applied in situations where there is scarce or insufficient empirical material for a direct quantification of 
uncertainty, and where it is relevant to obtain inscrutable and defensible results (Hora, 1992). 
      Several elicitation protocols have been developed amongst which the much-used Stanford/SRI Protocol is 
the first (Spetzler and von Holstein, 1975; see also Morgan and Henrion, 1990; chapter 6 and 7). 
      Expert elicitation typically involves the following steps: (1) Identify and select experts; (2) Explain to the 
expert the nature of the problem and the elicitation procedure. Create awareness of biases in subjective 
judgements and explore these. (3) Clearly define the quantity to be assessed and chose a scale and unit 
familiar to the expert. (4) Discuss the state of knowledge on the quantity at hand (strengths and weaknesses 
in available data, knowledge gaps, qualitative uncertainties). (5) Elicit extremes of the distribution. (6) Assess 
these extremes: could the range be broader than stated? (7) Further elicit and specify the distribution (shape 
and percentiles or characterising parameters). (8) Verify with the expert that the distribution that you 
constructed from the expert’s responses correctly represents the expert’s beliefs. (9) Decide whether or not to 
aggregate the distributions elicited from different experts (this only makes sense if the experts had the same 
mental models of the quantity for which a distribution was elicited). 

Resources required 
Typically performing a formal expert elicitation is a time and resource intensive activity. The whole process 
of setting up a study, selecting experts, preparing elicitation questions, performing expert training, expert 
meetings, interviews, analyses, writing rationales, documentation etc. can easily stretch over months or years. 
The choice of whether to perform a formal or a more informal elicitation (NCRP, 1996) depends on the price 
one is willing to pay for more inscrutable and defensible results, and will be influenced by the relevance and 
controversies regarding the problem area. 
      One needs to have good interviewing skills and a reasonable understanding of the field under 
consideration. A good understanding of biases in subjective judgements by experts is required to avoid these 
biases to the maximum extent possible. Skills are needed to draft a good questionnaire or template for the 
elicitation. Training in elicitation techniques may be needed. 

Strengths and limitations 
+ It has the potential to make use of all available knowledge including knowledge that cannot be easily 

formalised otherwise. 
+ It can easily include views of sceptics and reveals the level of expert disagreement on certain estimates. 
− The fraction of experts holding a given view is not proportional to the probability of that view being 

correct. 
− One may safely average estimates of model parameters, but if the expert's models were incommensurate, 

one may not average models (Keith, 1996). 
− If differences in expert opinion are irresolvable, weighing and combining the individual estimates of 

distributions is only valid if weighted with competence of the experts regarding making the estimate. 
There is no good way to measure competence. 

− The results are sensitive to the selection of the experts whose estimates are gathered. 

References 
Ayyub BM (2001) Elicitation of Expert Opinions for Uncertainty and Risks, CRC Press, Florida. 
Hora SC (1992) Acquisition of Expert Judgement: Examples from Risk Assessment.  Journal of Energy 

Engineering, 118, 136-148. 
Meyer MA and Booker JM (1991) Eliciting and Analyzing Expert Judgement: A practical Guide, Academic 

Press, London 
Morgan MG and Henrion M (1990) Uncertainty, A Guide to Dealing with Uncertainty in Quantitative Risk 

and Policy Analysis, Cambridge University Press. 
Spetzler CS and von Holstein S (1975) Probability Encoding in Decision Analysis. Management Science, 

22(3). 
http://legacy.ncsu.edu/classes/ce456001/www/Background1.html.
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4.4 Extended Peer Review (review by stakeholders) 
Description 
Extended peer review is the involvement of non-scientific actors in the quality assurance processes of 
knowledge production and assessment for policy making and risk management. Extended peer review can 
include all stakeholders engaged in the management of the problem at hand. Stakeholders are those actors 
who are directly or indirectly affected by an issue and who could affect the outcome of a decision making 
process regarding that issue or are affected by it. 
      Stakeholders’ reasoning, observation and imagination are not bounded by scientific rationality. This can 
be beneficial when tackling ill-structured, complex problems. Consequently, the knowledge and perspectives 
of the stakeholders can bring in valuable new views on the problem and relevant information on that 
problem. The latter is known as “extended facts”. Stakeholders can contribute to the quality of knowledge in 
a number of ways. These include improvement of the quality of the problem formulation and the questions 
addressed by the scientists; the contribution of knowledge on local conditions which may help determine 
which data are strong and relevant or which response options are feasible; providing personal observations 
which may lead to new foci for empirical research addressing dimensions of the problem that were 
previously overlooked; criticism of assumptions made by the scientist, which may lead to changes towards 
assumptions that better match real life conditions; and, creative thinking of mechanisms and scenarios 
through which projected environmental and hydrologic changes may affect different sectors of society. 

Resources required 
Extended peer review requires well-developed communication and group moderation skills, along with a 
good understanding of public perceptions of risks and of science in general. Didactic skill is also required to 
help stakeholders to understand the sometimes complex and abstract concepts used in scientific assessments. 
Involving social scientists in the design and implementation of extended peer review processes is 
recommended. 
 
Strengths and limitations 
+ Allows for the use of extra knowledge from non scientific sources 
+ Increases the level of public accountability in knowledge production 
+ Promotes a development from knowledge consumption towards knowledge co-production 
− Scientific and non-scientific participants are often not reciprocally accountable 
− Public tends to get co-opted according to dominant view 
− May reproduce power asymmetries. 

References 
Funtowicz SO and Ravetz JR (1996) Risk Management, post-normal science, and extended peer 

communities. In: Hood C and Jones DKC, Accident and Design, Contemporary debates in Risk 
Management. UCL Press, 172-182. 

Healy S (1999) Extended peer communities and the ascendance of post-normal politics. Futures, 31, 655–
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4.5 Inverse Modelling (parameter estimation) 
Description 
Parameter values are often optimised through inverse modelling. This is also denoted as automatic calibration 
(Duan et al, 1994; Hill, 1998; Doherty, 2003). An optimal parameter set is sought "automatically" by 
minimising an objective function, often defined as the summed squared deviation between the calibration 
targets (field data) and their simulated counterparts. 
      Most inversion techniques have the benefit that they in addition to optimal parameter values also produce 
calibration statistics in terms of parameter- and observation sensitivities, parameter correlation and parameter 
uncertainties. As the model calibration is based on a single model (with one possible model structure), errors 
in the model structure will be propagated to the model parameter uncertainties. The estimated parameter 
uncertainties are thus uncertainties for the effective model parameter given both the model structure and 
available observations (number, location and types of observations). This also means that estimated 
parameter uncertainties will not compensate adequately for the model structure uncertainty, when the model 
is used for prediction of conditions beyond the calibration base (e.g. when calibrating on groundwater flow 
and subsequently using the model to simulate groundwater transport and concentrations). Unless the model 
structure uncertainty is somehow considered the resulting simulation uncertainty will be significantly 
underestimated. 
      A different approach to autocalibration has been developed by Beven (Beven and Binley, 1992; Beven 
2002) in the Generalised Uncertainty Likelihood Estimation (GLUE) method. Beven argues that one optimal 
set of parameter values does not exist (equifinality concepts), and that many likely sets therefore should be 
included in model simulations. Thus modelling is carried out in a Monte Carlo framework, where a large 
number of realisations of parameter sets are sampled from a broad a priori space of possible parameter 
values. By adopting threshold values for acceptable simulation accuracy, and rejecting parameter 
combinations for non-behavioural models, it is then possible to estimate the space of plausible parameter 
values and hence make inferences about the parameter uncertainty. 
 
Resources required 
Many software tools support inverse modelling, which often requires only moderate resources and skills to 
operate. Good modelling skills and comprehensive experience are, however, required to understand and 
analyse the results properly. 
      Universal optimisation routines can be downloaded as freeware, e.g. PEST (http://www.sspa.com/pest) 
and UCODE (http://water.usgs.gov/software/ucode.html). 
 
Strengths and limitations 
+   Gives an objective estimate of parameter uncertainty based on information in available field data 
+   Most methods gives information on correlation between parameters 
- Most methods rely on assumptions, e.g. linearity as well as random and normally distributes residuals 
- Parameter uncertainties are computed for the specific model structure and available observations. The 

uncertainties may thus not be valid for conditions beyond the calibration base. 

References 
Beven K and Binley AM (1992) The future role of distributed models: model calibration and predictive 

uncertainty. Hydrological Processes, 6, 279-298. (See also http://www.es.lancs.ac.uk/hfdg/glue.html for 
further information on GLUE) 

Beven K (2002) Towards a coherent philosophy for modelling the environment. Proceedings of the Royal 
Society of London, A, 458 (2026), 2465-2484. 

Doherty J (2003) Ground water model calibration using pilot points and regularization. Ground Water, 41(2), 
170-177. (See also http://www.sspa.com/pest for further information/download of PEST) 

Duan Q, Sorooshian S and Gupta VK (1994) Optimal use of the SCE-UA global optimization method for 
calibrating watershed models. Journal of Hydrology 158, 265–284. 

Hill MC (1998) Methods and guidelines for effective model calibration. U.S. Geological Survey, Water-
Resources Investigations Report 98-4005. Denver CO (document available at 
http://pubs.water.usgs.gov/wri984005/). 
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4.6 Inverse modelling (predictive uncertainty) 
Description 
In addition to parameter estimation some of the inverse optimisation routines include the ability to estimate 
predictive uncertainties. The method by which the predictive uncertainty is derived varies among the 
inversion routines. But common to many of the local optimisation routines based on non-linear regression, is 
that the prediction of interest is treated as an observation, and the regression algorithm is then used to 
quantify the effect of the parameter uncertainty on this "observation". Some methods rely on a semi-
analytical solution in which the regression algorithm is used to compute either a predictive uncertainty 
interval for the output variable or uncertainty in the difference between a reference case and a scenario 
simulation. Other methods use the regression to seek the maximum or minimum value of the prediction under 
the constraint that the model must be calibrated at an acceptable level, which is defined by some predefined 
acceptance level of the objective function. 
 

Resources required 
If inverse optimisation is used for calibration, the extra resources required to run the predictive mode is very 
limited. Some methods may need a considerable number of model evaluation and thereby long execution 
times. 
 

Strenghts and limitations 
+   Gives an objective estimate of the predictive uncertainty given the applied model structure 
- Most methods rely on assumptions, e.g. linearity as well as random and normally distributes residuals 
- The predictive uncertainty are often limited to data types that can be defined as observations, this means 

that uncertainties on variables that are interpolated or extrapolated compared to the available field data 
can not be quantified by these methods. 

 
References 
Doherty J (2003) Ground water model calibration using pilot points and regularization. Ground Water, 41(2), 

170-177. 
Hill MC (1998) Methods and guidelines for effective model calibration. U.S. Geological Survey, Water-

Resources Investigations Report 98-4005. Denver CO (document available at 
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Tonkin MJ, Hill MC and Doherty JE (2004) MODFLOW-2000, the U.S. geological survey modular ground-
water model -- Documentation of mod-predict for predictions, prediction sensitivity analysis, and 
enhanced analysis of model fit. Open-File Report 03-385 (document available at 
http://water.usgs.gov/nrp/gwsoftware/modpredict/modpredict.html). 
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4.7 Monte Carlo Analysis 
Description 
Monte Carlo Simulation is a statistical technique for stochastic model-calculations and analysis of error 
propagation in calculations. Its purpose is to trace out the structure of the distributions of model output. In it's 
simplest form this distribution is mapped by calculating the deterministic results (realisations) for a large 
number of random draws from the individual distribution functions of input data and parameters of the 
model. Advanced sampling methods have been designed such as Latin Hyper Cube sampling to reduce the 
required number of model runs needed to get sufficient information about the distribution in the outcome 
(mainly to save computation time). Latin Hyper Cube sampling makes use of stratification in the sampling of 
individual parameters. As in random Monte Carlo sampling, pre-existing information about correlations 
between input variables can be incorporated. Monte Carlo analysis requires the analyst to specify probability 
distributions of all inputs and parameters, and the correlations between them. Both probability distributions 
and correlations are usually poorly known. Ignoring correlations and co-variance in input distributions may 
lead to substantial under- or over-estimation of uncertainty in model outcome. 
     Monte Carlo analysis is a skill, and when it is used without following some basic principles of good 
practice it may lead to meaningless results. A good primer for responsible use of Monte Carlo Analysis is, for 
instance, the EPA “Guiding Principles for Monte Carlo Analysis” (EPA, 1997). 
      Most Monte Carlo analysis software offers the possibility to determine the relative contribution of 
uncertainty in each parameter to the uncertainty in a model output, e.g. by sensitivity charts, and can be used 
for a sophisticated analysis of trends in the presence of uncertainty. 

Resources required 
A number of commercial and free software packages (@Risk, Crystal Bal, SimLab) are available to do 
Monte Carlo analysis. Another commercial package is Analytica (http://www.lumina.com), which is a 
quantitative modelling environment with built-in Monte Carlo algorithms. Packages such as Crystal Ball are 
very easy to learn. If you are familiar with Excel it takes less than one hour to get proficient with Crystal 
Ball. It takes more time to get proficient with SimLab and requires more skills because one has to interface 
SimLab with one's own model. 
      Performing Monte Carlo Analysis on complex models with long computation times and many variables 
requires major computer resources and computation time. Software solutions to combine PCs in a network to 
create a super computer capacity can be an outcome (e.g. the Super Muse software from the US-EPA: 
http://www.epa.gov/athens/research/modeling/supermuse/supermuse.html) 
 
Strengths and limitations 
+ Provides comprehensive insight in to how specified uncertainty in inputs propagates through a model. 
+ Forces analysts to consider uncertainty and interdependencies among different inputs explicitly. 
+ Is capable of coping with any conceivable shape of PDF and can account for correlations. 
+ Can be used in 2-dimensional models to assess variability and epistemological uncertainty separately. 
− Monte Carlo assessment is limited to quantifiable uncertainties. 
− One may not have any reasonable basis on which to ascribe a probability distribution to parameters 
− May take large run-time for computational intensive models. This can partly be remedied by using more 

efficient sampling techniques (e.g. Latin Hypercube Sampling). 
− The interpretation of a probability distribution of the model output by decision makers is not always 

straightforward. There is no single rule arising out of such a distribution that can guide decision-makers. 

References 
EPA (1997) Risk Assessment Forum, Guiding Principles for Monte Carlo Analysis, EPA/630/R-97/001. 

(http://www.epa.gov/NCEA/pdfs/montcarl.pdf) 
Crystal Ball 2000, User Manual Decision Engineering Inc., Denver. 
Palisade Corporation (2000) Guide to Using @RISK - Risk Analysis and Simulation Add-in for Microsoft 

Excel, Version 4, March 2000. 
Saltelli A, Chan K and Scott M (2000) Sensitivity Analysis John Wiley & Sons publishers, Probability and 

Statistics Series. 
Saltelli A, Tarantola S, Campolongo F and Ratto M (2004) Sensitivity Analysis in Practice: A Guide to 

Assessing Scientific Models, John Wiley & Sons publishers. 
Vose D (2000) Risk Analysis – A quantitative guide, 2nd edition. John Wiley & Sons, Ltd. Chichester. 
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4.8 Multiple Model Simulation 
Description 
Multiple Model Simulation is a strategy to address uncertainty about model structure. Instead of doing an 
assessment using a single model, the assessment is carried out using different models. For instance, this can 
be realised by having alternative model codes with different process descriptions (Linkov and Burmistrov, 
2003; Butts et al., 2004) or, in the groundwater case, by having different conceptual models based on 
different geological interpretations (Troldborg, 2000, Selroos et al., 2001). 
      The strategy of applying several alternative models based on codes with different model structures is also 
common in climate change modelling. Thus in its description of uncertainty related to model predictions of 
both present and future climates the IPCC Special Report on Emission Scenarios (IPCC, 200x) bases its 
evaluation on scenarios of many (up to 35) different models. 
      The same strategy is followed in the Dialogue Model (Visser et al. 2000). Dialogue simulates the cause 
effect chain of climate change, using mono-disciplinary sub-models for each step in the chain. The chain 
starts with scenarios for economic growth, energy demand, fuel mix etc., leading to emissions of greenhouse 
gasses, leading to changes in atmospheric composition, leading to radiative forcing of the climate, leading to 
climate change, leading to impacts of climate change on societies and ecosystems. Rather than picking one 
main-stream mono-disciplinary sub-model for each step, Dialogue uses multiple models for each step (for 
instance, three different carbon cycle models, five different GCM model-outcomes, etc.), representing the 
major part of the spectrum of expert opinion in each discipline. This multiple model approach facilitates the 
inclusion of new alternative models in each step to accommodate new scientific ideas on the structure of a 
given sub-model.  
      Refsgaard et al (submitted) present a new framework for dealing with uncertainty due to model structure 
error, based on alternative conceptual models and assessment of their pedigree and adequacy. 
Resources required 
Multiple model simulation requires modelling skills to design and implement the various model structures. 
Varying model structure is a much more complex task than varying parameters and there are no ready to use 
software solutions available. The required resources will further depend on the complexity of the model and 
the required time for each model run. If models developed and run by different modelling groups are used, a 
substantial part of the resources will be required for co-ordination and project management.  
Strengths and limitations 
+ The effects of alternative model structures can be analysed explicitly. 
+ It makes it possible to include expert knowledge on plausible model structures. 
+ It substantially reduces the chances that the assessment overlooks important aspects of the problem 

compared to the use of single models only. In that sense it may reduce surprises. 
− We cannot be sure whether we have adequately sampled the relevant space of plausible models. 

Important plausible model structures could be overlooked. 
− Often we do not know the plausibility and even less the probability of each conceivable model structure. 
− The expert knowledge on which the formulations of the alternative conceptual models have to be based 

has an unavoidable subjective element. 
References 
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4.9 NUSAP 
Description 
The NUSAP system for multidimensional uncertainty assessment (Funtowicz and Ravetz, 1990) aims to 
provide an analysis and diagnosis of uncertainty in science for policy. The basic idea is to qualify quantities 
using the five qualifiers of the NUSAP acronym: Numeral, Unit, Spread, Assessment, and Pedigree. NUSAP 
complements quantitative analysis with expert judgement of reliability (Assessment) and systematic multi-
criteria evaluation of the different phases of production of a given knowledge base (Pedigree). Pedigree 
criteria can be: proxy representation, empirical basis, methodological rigor, theoretical understanding, and 
degree of validation. Pedigree assessment can be further extended to also address societal dimensions of 
uncertainty, using criteria addressing different types of value weighting, quality of problem frames etc. 
NUSAP provides insight on two independent properties related to uncertainty in numbers, namely spread and 
strength. Spread expresses inexactness whereas strength expresses the methodological and epistemological 
limitations of the underlying knowledge base. The two metrics can be combined in a Diagnostic Diagram 
mapping strength of for instance model parameters and sensitivity of model outcome to spread in these model 
parameters. Neither spread alone nor strength alone is a sufficient measure for quality. Robustness of model 
output to parameter strength could be good even if parameter strength is low, if the spread in that parameter 
has a negligible effect on model outputs. In this situation our ignorance of the true value of the parameter has 
no immediate consequences. Alternatively, model outputs can be robust against parameter spread even if its 
relative contribution to the total spread in the model is high provided that parameter strength is also high. In 
the latter case, the uncertainty in the model outcome adequately reflects the inherent irreducible uncertainty 
in the system represented by the model. Uncertainty then is a property of the modelled system and does not 
stem from imperfect knowledge on that system. Mapping components of the knowledge base in a diagnostic 
diagram thus reveals the weakest spots and helps in the setting of priorities for improvement. 
Resources required 
Resources required for assessing the Spread qualifier depend on the method chosen (some form of Sensitivity 
Analysis or Monte Carlo analysis usually in combination with expert elicitation will be needed). 
      For the assessment of Pedigree, many resources (pedigree matrices, pedigree calculator, kite diagram 
maker, elicitation protocol and questionnaires) are freely available from http://www.nusap.net. Basic skills of 
Expert Elicitation are required. 
      Basic skills for facilitating structured group discussions are needed if one uses an expert workshop. In 
addition, skills are needed to arrive at a balanced composition of the workshop audience to minimise biases. 
      Time required per expert elicitation in a one to one interview depends on the number of parameters and 
the complexity of the case. Typically, it may vary between 1 and 5 hours. A substantial amount of time may 
be needed for a good preparation of the elicitation interviews. 
      Recommended length for a NUSAP expert elicitation workshop is between one and one and a half days 
Strengths and limitations 
+ Identifies both quantitative and qualitative uncertainty in quantitative information and enables them to be 

displayed in a standardised and self-explanatory way 
+ Promotes criticism by clients and users of all sorts, both expert and lay, and will thereby support 

extended peer review processes 
+ It is flexible in its use and can be used on different levels of comprehensiveness: from a 'back of the 

envelope' sketch based on self elicitation to a comprehensive and sophisticated procedure involving 
structured, informed, in-depth group discussions on a parameter by parameter format 

− The scoring of pedigree criteria is to a large extent based on subjective judgements. Therefore, outcomes 
may be sensitive to the selection of experts involved in the scoring. 

− It is hard to apply the method to complex models with large numbers of parameters. 

References 
Www.nusap.net
Funtowicz SO and Ravetz,JR (1990) Uncertainty and Quality in Science for Policy. Dordrecht: Kluwer. 
Craye M, van der Sluijs JP and Funtowicz SO (2004) A reflexive approach to dealing with uncertainties in 
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Van der Sluijs JP, Craye M, Funtowicz SO, Kloprogge P, Ravetz JR and Risbey J (2005) Combining 
Quantitative and Qualitative Measures of Uncertainty in Model based Environmental Assessment: the 
NUSAP System, Risk Analysis, 25 (2). 

Van der Sluijs JP, Risbey J and Ravetz JR (in press) Uncertainty Assessment of VOC emissions from Paint 
in the Netherlands, Environmental Monitoring and Assessment. 
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4.10 Quality Assurance 
Description 
Quality assurance (QA) may be defined as protocols and guidelines to support the proper application of 
models. Important aims of QA are to ensure the use of best practise and to ensure that the expected accuracy 
and model performance are in accordance with the project objectives. Uncertainty and QA are intimately 
linked as uncertainty plays a very important role throughout the modelling process.   
     Many QA guidelines exist such as Middlemis (2000), Van Waveren et al. (1999) and Scholten et al. 
(submitted). Most guidelines have been prepared for a single modelling domain, such as groundwater and for 
use in a particular, confined, market such as a single country (Refsgaard, 2002; Refsgaard et al., 2004). 
     Key elements of QA procedures include: 
• Definition of the purpose of the modelling study, including translation of the water manager and 

stakeholder needs to preliminary performance criteria. 
• Establishment of performance criteria. The accuracy of the model predictions has to be established via a 

trade off between the benefits of improving the accuracy in terms of less uncertainty on the management 
decisions and the costs of improving the accuracy through additional model studies and/or collection of 
additional field data.  

• Reviews carried out by independent auditors with subsequent consultation between the modeller, the 
water managers and possibly the stakeholders at different phases of the modelling project. Important 
aspects of the reviews are to ensure that good practise has been followed and to evaluate if the 
uncertainty assessments made by the modeller are credible and adequate. 

• Performance of model validation tests, i.e. testing of model performance against independent data that 
have not been used for calibration in order to assess the accuracy and credibility of the model 
simulations for situations comparable to those where it is intended to be used. 

     The HarmoniQuA project has developed a comprehensive set of QA guidelines for multiple modelling 
domains combined with a supporting software tool, MoST (downloadable via www.harmoniqua.org). In 
addition to the software tool, the HarmoniQuA guidelines are unique in their dedication aspects, namely that 
different tasks and responsibilities are described for different users, different modelling domains and 
different levels of modelling job complexity. 

Resources required 
For QA to become successful it is required that both the modeller and the water manager are motivated and 
active in supporting its use. The water manager has a particular responsibility, because they have the power 
to request and pay for adequate QA in modelling studies. Therefore, QA guidelines can only be expected to 
be used in practice, if the water manager prescribes their use. In this respect, it is essential that the water 
manager has the technical capacity to organise the QA process. 
Strengths and limitations 
+   Improves the chances that best practise is used 
+   Improves the quality of the work and the credibility of the results 
+   Makes it possible to include stakeholders into the modelling process in a formalised framework, either as 

information, consultation or involvement. 
+   Improves the transparency and reproducibility of the modelling work. 
-    To be done properly it requires resources and adds to the cost of a modelling study. 
-    May become a ‘rubber stamp’ and generate a false credibility if not designed and performed thoroughly. 
References 
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4.11 Scenario Analysis 
Description 
Scenario Analysis aims to describe logical and internally consistent sequences of events to explore how the 
future may, could or should evolve from the past and present. The future is inherently uncertain. Different 
alternative futures can be explored through scenario analysis. As such, scenario analysis is also a tool to deal 
explicitly with different assumptions about the future. A definition is “Scenarios are descriptions of journeys 
to possible futures. They reflect different assumptions about how current trends will unfold, how critical 
uncertainties will play out and what new factors will come into play” (UNEP, 2002). Another definition is: 
“A scenario is a description of the present state of a social and or natural system (or a part of it), of possible 
and desirable future states of that system along with sequences of events that could lead from the present 
state to these future states.” Other definitions also include the purposes of the use of scenarios.  
      Different types of scenarios can be distinguished. For instance, Alcamo (2001) discerns baseline vs. 
policy scenarios, exploratory vs. anticipatory scenarios and qualitative vs. quantitative scenarios. 
      Baseline scenarios present the future state of society and environment in which no (additional) 
environmental policies do exist or have a discernible influence on society or the environment. Policy 
scenarios depict the future effects of environmental protection policies. Exploratory scenarios start in the 
present and explore possible trends into the future. Anticipatory scenarios start with a prescribed vision of the 
future and then work backwards in time to visualise how this future could emerge. Qualitative scenarios 
describe possible futures in the form of narrative texts or so-called “story-lines”. Quantitative scenarios 
provide tables and figures incorporating numerical data often generated by sophisticated models. 
      Finally, scenarios can be surprise-free or trend scenarios, that extend foreseen developments, on the one 
hand or include surprises and exploring the extremes (e.g. best case / worst case) on the other hand. 

Resources required 
Scenario analysis requires creativity and ability to think outside the scope of the familiar and the present. 
Furthermore, it requires insight in dynamics, relationships, in synergies of systems and their environment and 
thus it requires a broad knowledge of the field involved. Therefore, scenarios analysis should take place in an 
interdisciplinary team. 
      In the case of a quantitative approach, computer models or spreadsheets or other software are needed to 
run/visualise scenarios. Access to relevant data is important in order to be able to construct the scenarios. 
In the case of a qualitative approach, input has to be collected from experts, stakeholders or users in 
workshops with stakeholders to be able to develop storylines. Basic skills for facilitating groups are required. 
Both approaches are time and resource consuming. 

Strengths and limitations 
+ Scenarios are often the only way to deal with the unknown future; 
+ Assumptions about future developments are made transparent and documented 
+ Gives insight in key factors that determine future developments; 
+ Creates awareness on alternative development paths, risks, and opportunities and possibilities for 

policies or decision-making. 
− The analysis is limited to those aspects of reality that can be quantified (quantitative scenarios); 
− Difficult to test underlying assumptions (qualitative scenarios); 
− Frequently scenarios do not go beyond trend extrapolation (quantitative scenarios) and are surprise-free; 
− Frequently models used contain only one view, which will make the outcomes narrow in scope, thus not 

doing justice to the wish to explore fundamentally different futures. 

References 
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4.12 Sensitivity Analysis 
Description 
Sensitivity analysis (SA) is the study of how the variation in the output of a model (numerical or otherwise) 
can be qualitatively or quantitatively apportioned to different sources of variation, and of how the outputs of 
a given model depend upon the information fed into it (Saltelli et al., 2000, 2004). 
 
Depending on the complexity of a model’s output space SA methods may range from the simple to the 
relatively complex. If a model’s output space is linear or approximates a hyperplane, SA may be conducted 
through a straightforward application of differential analysis. This is typically done by taking partial 
derivatives of the output with respect to one input, holding all other inputs constant. 
      If a model’s output space is nonlinear (or does not approximate a hyperlplane) then the assumptions for 
differential analysis do not hold. Differential analysis may be conducted, but the analyst should be aware that 
the results may apply only to a narrow range of the output space. For this reason, differential analysis in this 
situation is referred to as Local SA. 
      If the analyst wishes to conduct Global SA (i.e. SA across the model’s entire output space) for nonlinear 
(non-hyperplaner) models, then other analytical methods should be used. These include such methods as 
Monte Carlo Analysis, Morris’ One-at-a-time method and various variance based methods such as Fourier 
Amplitude Sensivity Test (FAST).  

Resources required 
Sensitivity Analysis (SA) requires basic computer skills and basic knowledge of statistical concepts. 
Software for SA is available both as freeware (such as SIMLAB) and commercial. SIMLAB: 
http://www.jrc.cec.eu.int/uasa/prj-sa-soft.asp and  
http://sensitivity-analysis.jrc.cec.eu.int/default2.asp?page=SIMLAB
Commercial packages for Monte Carlo analysis such as @Risk (http://www.palisade.com) and Crystal Ball 
(http://www.decisioneering.com/crystal_ball) include options for sensitivity analysis. @Risk and Crystal Ball 
are designed as fully integrated MS-Excel add-in programs with their own toolbar and menus.  
The precise requirements depend on the complexity of the model to which one applies the Sensitivity 
Analysis and the number of factors one wants to include in the analysis. It may be necessary to program an 
interface between the model and the Sensitivity Analysis software. 

Strengths and limitations 
+ Gives insight in the potential influences of all sorts of changes in inputs 
+ Helps discrimination across parameters according to importance for the accuracy of the outcome 
+ Software for Sensitivity Analysis is freely available 
+ SA can help in evaluating the fit-for-purpose of a model  
− Has a tendency to yield an overload of information.  
− SA does not require one to assess how likely it is that specific values of the parameters will actually 

occur.  
− Commercial software packages for SA can be used with minimal knowledge on the sampling and 

calculations techniques itself, which allows incompetent use. 
− In practice SA often takes the model structure and system boundaries for granted 

References 
Saltelli A, Chan K and Scott M (2000) Sensitivity Analysis John Wiley & Sons publishers, Probability and 

Statistics Series. 
Saltelli A, Tarantola S, Campolongo F and Ratto M (2004) Sensitivity Analysis in Practice: A Guide to 

Assessing Scientific Models, John Wiley & Sons Publishers. 
Campolongo F, Tarantola S and Saltelli A (1999) Tackling quantitatively large dimensionality problems. 

Computer Physics Communication, 117, 75-85. 
Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics, 
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4.13 Stakeholder Involvement 
Description 
Stakeholder involvement in not only the decision making process but also in knowledge production and 
knowledge use, can help to assess and manage complex (environmental) problems in a better way. This 
potential can be tapped in three ways: 
(1) By enabling them to articulate issues of concern and to improve the problem framing for research and 

policy;  
(2) By utilising their own (non scientific) knowledge and observations and their capacity to invent new 

options; and  
(3) By involving them actively in the quality control of the operational knowledge that is co-produced 

(extended peer review). 
By engaging stakeholders into the risk management process it is likely that they will not only contribute to 
future risk management decisions but also support their implementation. 
      We have another concern as well when addressing complex environmental policy issues in a participatory 
way. The scientific soundness of the presumed causal mechanisms underlying alternative problem definitions 
needs to be warranted if we want to base our policies on scientifically sound underpinnings. Although there is 
more than one legitimate interpretation of the science, this plurality of perspectives does not deny the special 
competence of scientists. It does mean that there is a mixing and blending of skills, partly technical and partly 
personal, of all those engaged that can enrich the comprehension of the whole. 
      The RIVM/MNP Guidance for Uncertainty Assessment and Communication (Van der Sluijs et al. 2004) 
has a useful section on stakeholder involvement, including an instrument for discourse analysis. 
      Stakeholders can also be used in environmental monitoring, as is done for instance in the European 
Phenological Data Platform for Climatological Applications and other initiatives where citizens provide 
observations on effects of climate changes on nature (e.g. first day in the year that a bird species is observed).
      The HarmoniCOP project has developed a typology to characterise tools to support the public 
participation process in relation to implementation of the Water Framework Directive (Maurel, 2003). 

Resources required 
Stakeholder involvement in knowledge production requires very good communication and deliberation skills 
and the involvement of social scientists is recommended. It also puts high requirements on the infrastructure 
through which stakeholders can contribute their knowledge and on the quality assurance of the knowledge 
provided, especially if this infrastructure has to function during a long period of time (as with environmental 
monitoring systems). 

Strengths and limitations 
+ Increases the level of public accountability in knowledge production 
+ May increase the public support for the knowledge base that is co-produced 
− There are many unresolved challenges regarding the quality control of knowledge produced by non 

scientific actors 
References 
Kloprogge P and van der Sluijs JP (forthcoming) The inclusion of stakeholder knowledge and perspectives in 

integrated assessment of climate change. Climatic Change. 
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Stern PC and Fineberg HV (eds.) (1996) Understanding risk, informing decisions in a democratic society, 
Washington DC: National Research Council, National Academy Press. 
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4.14 Uncertainty Matrix 
Description 
The uncertainty matrix (Walker et al, 2003, Janssen et al., 2003) can be used to identify and prioritise the 
most important uncertainties in a given model study. The matrix shown below is an example of a project 
specific adaptation of the more general uncertainty matrix shown in Fig. 5, above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a specific application the different sources of uncertainty are listed in the rows and the type of uncertainty 
associated to each source is noted and characterised. This may be done either quantitatively or, as shown in 
the above figure, qualitatively. The importance of each source may then be characterised by a weighting 
depending on its impact on the modelling study in question. The Sum of uncertainty may then be assessed, 
e.g. by use of the error propagation equation (Section 4.2). 
      It may not be possible to identify all sources of uncertainty and/or assigning correct weightings from the 
project start. The matrix may thus be used interactively by adding or reassigning weights during the 
modelling process as more insight into the system is gained.
Resources required 
The uncertainty matrix can be used as a heuristic instrument and screening tool. One can draft a gross list of 
uncertainties to be addressed and give a priority (e.g. high, medium, low) to each cell by going over all the 
cells of the matrix systematically and reflecting on the question whether that cell may be relevant to include 
in an uncertainty assessment of the case at hand. This can be done by an individual researcher; in a dialogue 
in a research team; or in a dialogue between a research team and the client; or, in a wider dialogue between 
the research team, the client and a group of stakeholder representatives. 
      The resources required will depend on the way the matrix is used in the process. The broader the dialogue 
is in which the tool is used, the more resources will be required. 
Strengths and limitations 
+ Forces the analyst to systematically consider a broad range of possible sources and types of uncertainty. 

It thereby reduces the chance that important uncertainties are overlooked. 
+ Can be used quick and dirty/back of the envelope or more sophisticated and comprehensive 
+ Facilitates and structures a dialogue on uncertainty, both within a research team and in communication 

with clients, peers and stakeholders 
− Strongly relies on expert judgement, the result is likely to be sensitive to the composition of the group of 

analysts involved in applying the matrix 
− Yields mainly qualitative insights, has limited value if it is not complemented by some form of 

quantitative analysis 
References 
Walker WE, Harremoës P, Rotmans J, Van der Sluijs JP, Van Asselt MBA, Janssen P and Krayer von Krauss 

MP (2003) Defining Uncertainty A Conceptual Basis for Uncertainty Management in Model-Based 
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6960-105-2, 2003 (available from www.nusap.net) 

Source of uncertainty Statistical 
uncertainty

Scenario 
uncertainty

Qualitative 
uncertainty

Recognised 
ignorance

Weight-
ing

(uncertainty x 
weight)

Problem context
 - future agritultural practise medium medium medium large medium
 - future climate medium medium large medium medium
Input data
 - catchment data medium small large medium
 - nitrate load from agriculture small small large small
Parameter uncertainty
 - water quantity small small medium small
 - water quality medium medium medium small
Model structure (conceptual)
 - geology large large medium large large
 - nitrate reduction in underground medium medium large large large
Model technical uncertainty
 - numerical approximation small small medium small
 - bugs in software medium medium small

SUM:

Importance Type of uncertainty

http://www.nusap.net/
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5. How to select the appropriate methodology for uncertainty 
assessment 

5.1 Introduction 
Some of the more important types of methodologies and associated tools that may be 
applied for assessing uncertainties are listed and briefly described in Chapter 4. The next 
question is which methodology should be selected for a particular purpose and task of the 
modelling process. 
 
The selection of an adequate methodology depends on: 
• Where in the modelling process the analysis should be carried out, cf. Chapter 2. 
• The type, nature and source of uncertainty, cf. Chapter 3. 
• The priority that addressing each of the identified sources of uncertainty has, according 

to their importance for the decision-making process (“policy relevance”). 
• The available resources and level of ambition with respect to completeness of the 

analysis. 
 
Guidance regarding the selection of appropriate methodologies/tools for different purposes 
is provided in the following two sections. 

 
 

5.2 Methodologies according to modelling process and level of ambition 
Table 1 provides a list of applicable methodologies that are considered to be adequate for 
the different tasks/steps in the modelling process described in Chapter 2 and Fig. 3. 
Furthermore, it includes hints for which methodologies are more suitable for 
comprehensive analysis with relatively large economic resources for the study and which 
methodologies correspond to a lower level of ambition (denoted as “basic” in the Table).  
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Table 1 Suitable methodologies to deal with uncertainty at various stages of a modelling 
process 

Level of ambition/available 
resources 

Type of uncertainty 
aspect 

Task in the modelling 
process (cf. Fig. 2) 

Basic Comprehensive 
Describe Problem and 
Context (Step 1) 

 
Identify and characterise 
sources of uncertainty Determine Requirements 

(Step 1) 

UM EPE, SI, UM 

Prepare and Evaluate Tender 
(Step 1) 
Reporting (Step 2) 
Reporting (Step 3) 
Reporting (Step 4) 
Reporting (Step 5) 

 
 
 
Modeller reconsiders 
uncertainty and 
performance criteria 

Specify or Update 
Calibration and Validation 
Targets and Criteria (Step 3) 
Agree on Model Study Plan 
and Budget 

 
 
 
 

(Update of) UM 
+ 

Common sense 

Review of Step 2 QA EPR, QA 
Review of Step 3 QA EPR, QA 
Review of Step 4 QA EPR, QA 

 
 
 
Reviews-dialogue-
decisions 

Review of Step 5 QA EPR, QA 
Uncertainty Analysis of 
Calibration and Validation 
(Step 4) 

DA, EPE, SA DA, EPE, EE, IN-
PA, IN-UN, MCA, 
MMS, NUSAP, SA 

 
Uncertainty assessment 
and propagation 

Uncertainty Analysis of 
Simulation (Step 5) 

DA, EPE, SA DA, EPE, EE, IN-
UN, MCA, MMS, 
NUSAP, SC,SA, SI 

Abbreviations of methodologies: 
DA Data Uncertainty 
EPE Error Propagation Equations 
EE Expert Elicitation 
EPR Extended Peer Review (review by stakeholders) 
IN-PA Inverse modelling (parameter estimation) 
IN-UN Inverse modelling (predictive uncertainty) 
MCA Monte Carlo Analysis 
MMS Multiple Model Simulation 
NUSAP NUSAP 
QA Quality Assurance 
SC Scenario Analysis 
SA Sensitivity Analysis 
SI Stakeholder Involvement 
UM Uncertainty Matrix 
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5.3 Methodologies according to source and type of uncertainty 
Table 2 provides a list of applicable methodologies for addressing uncertainty of different 
types and originating from different sources. Note that the nature of uncertainty (epistemic 
or stochastic) has been omitted as compared to the uncertainty matrix in Fig. 4. The reason 
for this is that this is a third dimension and that each of the cells below may be divided into 
reducible (epistemic) and irreducible (stochastic) uncertainty. 
 
Table 2 Correspondence of the methodologies with the source and types of uncertainty 
distinguished in the uncertainty taxonomy (inspired by van der Sluijs et al., 2004).  
 

Taxonomy (types of uncertainty)  
Source of uncertainty Statistical 

uncertainty 
Scenario 

uncertainty 
Qualitative 
uncertainty 

Recognised 
ignorance 

 
Context 

Natural, 
technological, 
economic, 
social, political 

EE EE, SC, SI EE, EPR, 
NUSAP, SI, 
UM 

EE, EPR, 
NUSAP, SI, UM 

System data DA, EPE, EE, 
MCA, SA 

DA, EE, SC DA, EE DA, EE Inputs 

Driving forces DA, EPE, EE, 
MCA, SA 

DA, EE, SC DA, EE, EPR DA, EE, EPR 

Model structure EE, MMS, QA EE, MMS, SC, 
QA 

EE, NUSAP, 
QA 

EA, NUSAP, QA

Technical QA QA QA QA 

 
Model 

Parameters IN-PA, SA, QA IN-PA, SA, QA QA QA 
Model outputs EPE, EE, IN-

UN, MCA, 
MMS, SA 

EE, IN-UN, 
MMS, SA 

EE, NUSAP EE, NUSAP 

Abbreviations of methodologies: 
DA Data Uncertainty 
EPE Error Propagation Equations 
EE Expert Elicitation 
EPR Extended Peer Review (review by stakeholders) 
IN-PA Inverse modelling (parameter estimation) 
IN-UN Inverse modelling (predictive uncertainty) 
MCA Monte Carlo Analysis 
MMS Multiple Model Simulation 
NUSAP NUSAP 
QA Quality Assurance 
SC Scenario Analysis 
SA Sensitivity Analysis 
SI Stakeholder Involvement 
UM Uncertainty Matrix 
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6. Illustrative cases 
The following cases aim to illustrate which uncertainty methods typically might be 
selected in different types of modelling studies. With reference to Fig. 2 above the first two 
cases address model application to design programme of measures, while the last two cases 
deals with implementation and monitoring, respectively. The main difference between the 
two first cases lies in the level of ambition/available resources, cf. Table 1 above. The 
cases are hypothetical. 
 

6.1 Case 1: Designing measures – nutrient load/comprehensive modelling 
This case resembles some of the problems typically encountered in some central and 
northern European river basins with eutrophication of surface water bodies caused by 
nutrient loads primarily from agriculture but also to some extent from industry and urban 
areas. The conditions can furthermore be characterised by: 
• There is a good amount of high quality data. 
• Modelling studies have regularly been carried out during the past 10 years for various 

water management purposes. 
• The river basin authority (water manager) has a large and highly professional staff 

with comprehensive experience in handling modelling projects. 
• Some of the key stakeholders are very well organised and have professional support 

(e.g. agricultural advisory service and green NGOs) that are able to evaluate and 
challenge any possible scientific weaknesses of modelling studies. 

 
In this case the river basin authority has to select the most appropriate measure or 
combination of several measures required in order to achieving the objectives of good 
ecological status. The possible measures may include some with various kind of 
restrictions on agricultural management, some focussing on removal of nutrients from 
industrial and urban point sources and some resulting in restoration of nature areas, e.g. 
with more frequent inundation and associated restrictions on land use. 
 
A typical selection of uncertainty methods is illustrated in Table 3. 
 

6.2 Case 2: Designing measures – water scarcity/basic modelling 
This case resembles some of the problems typically encountered in some Mediterranean 
river basins with water scarcity and competing demand from different stakeholders for 
urban water supply, irrigation and nature. The conditions can furthermore be characterised 
by: 
• There are relatively few data. 
• Previously modelling studies have only been carried out for research purposes. 
• The river basin authority (water manager) has a professional staff with little experience 

in handling modelling projects. 
• The key stakeholders are very well organised but they do not have access to 

professional support that can assist them in evaluating and challenging the possible 
scientific weaknesses of modelling studies. 

 
In this case the river basin authority has to select the most appropriate measure or 
combination of several measures required to solve the water scarcity problem and at the 
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same time achieving the objectives of good ecological status. The possible measures may 
include some on water savings and demand management and some involving additional 
supply (e.g. from desalination, from a new reservoir or from new groundwater abstraction). 
 
A typical selection of uncertainty methods is illustrated in Table 4. 
 

6.4 Case 3: Implementation – Real-time forecasting (of Case 2) 
This case can be seen as a continuation of Case 2 above. Assume that the measures 
designed in Case 2 has included a reservoir with a condition on a certain downstream flow 
regime to be maintained, e.g. in terms of required minimum flows and/or water quality 
criteria. In order to ensure the downstream flow regime and at the same time minimise the 
release from the reservoir real-time forecasts on the future flows (up to a week) is 
performed. 
 
In this case the hydrological model setup and applied during Case 2 will typically be 
extended and used in real-time operation. Most of the model can be used directly, but it 
needs to be tailored to run operationally in a real-time environment, implying a 
modification to use input data from only on-line stations and development of an updating 
routine to enable feed-back from real-time flow data.  
 
A typical selection of uncertainty methods is illustrated in Table 5. 
 

6.4 Case 4: Evaluation - Post project appraisal (of Case 1) 
This case can be seen as a continuation of Case 1 above. Assume that the measures 
designed in Case 1 have been implemented and that a monitoring programme has been 
established to monitor to which extent the measures have had the desired effect. In case of 
nutrient loads from agriculture, this is known to show large temporal variations generated 
by climate variability. Thus winters with more rainfall and higher temperatures will give 
larger nutrient load than winters with less rainfall and/or lower temperatures. This temporal 
variability is usually much larger than the change in average load that is the objective of 
the designed programme of measures. Such climatically generated variance in a monitoring 
time series appears as noise if a statistical test is performed to identify a possible trend or a 
step change in the data.  
 
In this case a dynamic model driven by climate input may be used to simulate the variation 
generated by the climate alone. By filtering out part of the climatically generated noise it 
may then be possible to identify changes in nutrient loads caused by the WFD measures 
(Refsgaard et al, 1989; Lørup et al., 1998). As the basic model has been established in Case 
1 this model application can be seen as a post project appraisal. It will therefore typically 
not be required to start from scratch, but rather to re-use the already calibrated/validated 
model – just with new input data.  
 
A typical selection of uncertainty methods is illustrated in Table 6. It is noted that, due to 
the re-use of an existing model, the modelling steps 2, 3 and 4 are not performed here. 



 

Table 3 Example of methods selected in Case 1: Design measures – nutrient load/comprehensive modelling 
Modelling process 

Modelling 
Step (Fig. 3)

Uncertainty 
method 

Content 
Link to decision (WFD) process 

UM Identification and characterisation of sources of uncertainty used as a 
basis for prioritising what should be done in the modelling study 

STEP 1 
Framing of 
modelling 
study 

SI Stakeholders express their interests and wishes with respect to 
objectives of modelling and requirements to accuracy 

Stakeholders and water manager are key players in the 
WFD process and are continuously involved in this 
modelling step translating the needs in the decision 
process to modelling objectives and requirements 

UM Update of uncertainty matrix 
DA Assessment of data uncertainty done by modeller 
SA Sensitivity analysis to identify most important parameters for 

calibration 
IN-PA Assessment of uncertainty of model parameter values 
MCA Monte Carlo analysis to investigate whether the model results 

obtained during calibration and validation possibly can be explained 
by the assessed uncertainty on input data and parameter values 

QA Peer review of modelling work done by an external modelling expert 

STEPs 2, 3, 4 
Conceptualise, 
set up and 
document 
model 

EPR Stakeholder reviews of technical elements with special emphasis on 
the relevance and quality of the modelling study evaluated on the basis 
of the knowledge and interests possessed by the stakeholders  

These steps in the modelling process are driven by the 
modeller. Stakeholders and water managers follow the 
modelling process through reports and meetings. The 
link to the WFD process is ensured by a formalised 
dialogue in connection with reviews at the end of each 
step, where decisions on approval of past work and 
possible adjustments of future project works are made 

EE Expert elicitation on likely elements in scenarios for future 
developments 

SC  Scenario analysis
MCA Comprehensive Monte Carlo analysis with propagation of 

uncertainties on data and parameter values to assess uncertainty of 
model outcome  

MMS Formulation of multiple model structures to encapsulate the 
uncertainty on process equations, hydrogeological interpretations, etc. 

QA Peer review of modelling work done by an external modelling expert 

STEP 5 
Model 
application 

EPR Stakeholder reviews of technical elements with special emphasis on 
the relevance and quality of the scenario analysis and uncertainty 
assessments 

The main part of the work in this final step is done by 
the modeller, but in a close dialogue with stakeholders 
and the water manager, who carry the results of the 
modelling study back into the WFD decision process. 

   
       
 



 

Table 4 Example of methods selected in Case 2: Design measures – water scarcity/basic modelling 
Modelling process 

Modelling 
Step (Fig. 3)

Uncertainty 
method 

Content 
Link to decision (WFD) process 

STEP 1 
Framing of 
modelling 
study 

UM Identification and characterisation of sources of uncertainty used as a 
basis for prioritising what should be done in the modelling study 

Stakeholders and water manager are key players in the 
WFD process and are continuously involved in this 
modelling step translating the needs in the decision 
process to modelling objectives and requirements 

UM Update of the uncertainty matrix 
DA Assessment of data uncertainty done by modeller 
SA Sensitivity analysis to investigate whether the model results obtained 

during calibration and validation possibly can be explained by 
reasonable uncertainty assumptions on input data and parameter 
values 

STEPs 2, 3, 4 
Conceptualise, 
set up and 
document 
model 

QA Peer review of modelling work done by an external modelling expert 

These steps in the modelling process are driven by the 
modeller. Stakeholders and water managers follow the 
modelling process through reports and meetings. The 
link to the WFD process is ensured by a formalised 
dialogue in connection with reviews at the end of each 
step, where decisions on approval of past work and 
possible adjustments of future project works are made 

SC  Scenario analysis
SA Sensitivity analysis to investigate the robustness of the model outputs 

to uncertainty in input data and model parameters 

STEP 5 
Model 
application 

QA Peer review of modelling work done by an external modelling expert 

The main part of the work in this final step is done by 
the modeller, but in a close dialogue with stakeholders 
and the water manager, who carry the results of the 
modelling study back into the WFD decision process. 

 

   
       
 



 

Table 5 Example of methods selected in Case 3: Implementation – real-time forecasting (of Case 2) 
Modelling process 

Modelling 
Step (Fig. 3)

Uncertainty 
method 

Content 
Link to decision (WFD) process 

STEP 1 
Framing of 
modelling 
study 

UM Identification and characterisation of sources of uncertainty used as a 
basis for prioritising what should be done in the modelling study 

Stakeholders and water manager are key players in the 
WFD process and are continuously involved in this 
modelling step translating the needs in the decision 
process to modelling objectives and requirements 

UM Update of the uncertainty matrix 
DA Assessment of data uncertainty done by modeller 

SA Sensitivity analysis to investigate whether the model results obtained 
during calibration and validation of the new model elements (new on-
line stations, data assimilation algorithm) possibly can be explained by 
reasonable uncertainty assumptions on input data and parameter 
values 

STEPs 2, 3, 4 
Conceptualise, 
set up and 
document 
model 

QA Peer review of modelling work done by an external modelling expert 

These steps in the modelling process are driven by the 
modeller. Stakeholders and water managers follow the 
modelling process through reports and meetings. The 
link to the WFD process is ensured by a formalised 
dialogue in connection with reviews at the end of each 
step, where decisions on approval of past work and 
possible adjustments of future project works are made 

DA Assessment of data uncertainty done by modeller 
MCA Assessment of uncertainty of forecasted flows/water quality. This may 

for instance be done by Ensemble Kalman Filtering, which includes 
Monte Carlo techniques 

STEP 5 
Model 
application 

QA Peer review of modelling work done by an external modelling expert 

The main part of the work in this final step is done by 
the modeller, but in a close dialogue with stakeholders 
and the water manager, who carry the results of the 
modelling study back into the WFD decision process. 

 

   
       
 



 

   
       
 

Table 6 Example of methods selected in Case 4: Evaluation – post project appraisal (of Case 1) 
Modelling process 

Modelling 
Step (Fig. 3)

Uncertainty 
method 

Content 
Link to decision (WFD) process 

STEP 1 
Framing of 
modelling 
study 

UM Identification and characterisation of sources of uncertainty used as a 
basis for prioritising what should be done in the modelling study 

Stakeholders and water manager are key players in the 
WFD process and are continuously involved in this 
modelling step translating the needs in the decision 
process to modelling objectives and requirements 

STEPs 2, 3, 4 
Conceptualise, 
set up and 
document 
model 

  These steps are not performed in this case, because the 
model from Case 1 is re-used.  

DA Assessment of data uncertainty done by modeller 
SA Sensitivity analysis to investigate the robustness of the model outputs 

to uncertainty in input data and model parameters 
QA Peer review of modelling work done by an external modelling expert 

STEP 5 
Model 
application 

EPR Stakeholder reviews of technical elements with special emphasis on 
the relevance and quality of the scenario analysis and uncertainty 
assessments 

The main part of the work in this final step is done by 
the modeller, but in a close dialogue with stakeholders 
and the water manager, who carry the results of the 
modelling study back into the WFD decision process. 
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